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• vi Dockerfile

• i

•

FROM ubuntu:latest

RUN mkdir –p /root/app

RUN echo “echo Hello World” > /root/app/docker.sh

RUN chmod +x /root/app/docker.sh

CMD [“/bin/bash”, “-c”, “/root/app/docker.sh”]

• esc

• :wq

https://labs.play-with-docker.com/


• docker build –t hello-world .

• docker run hello-world

•
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• vi Dockerfile

• i

•

FROM nginx

RUN echo “Hello World!” > /usr/share/nginx/html/index.html

CMD  [“nginx-debug”, “-g”, “daemon off;”]

• esc

• :wq

https://labs.play-with-docker.com/


• docker build –t web-test .

• docker run –it –p 8080:80 web-test
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• vi docker-compose.yaml

• i

•

• esc

• :wq

services:
  mysql:
    image: mysql:5.7
    container_name: mysql
    environment:
      MYSQL_ROOT_PASSWORD: my_secret_password
    restart: unless-stopped
  phpmyadmin:
    image: phpmyadmin/phpmyadmin
    container_name: phpmyadmin
    depends_on:
      - mysql
    environment:
      PMA_HOST: mysql
      PMA_PORT: 3306
      PMA_ARBITRARY: 1
      PMA_USER: root
      PMA_PASSWORD: my_secret_password
    restart: unless-stopped
    ports:
      - 8083:80

https://labs.play-with-docker.com/


• docker compose up
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https://github.com/hotheadhacker/awesome-selfhost-docker
https://hub.docker.com/
https://docs.docker.com/desktop/
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$ docker pull --platform linux/arm64 hello-world
$ docker save -o hello-world.tar hello-world



•

•

•

#file: docker-compose.yaml

services:
  hello-world:
    image: hello-world
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$ docker pull --platform linux/arm64 nginx
$ docker save -o nginx.tar nginx

services:
  web-server:
    image: nginx
    ports:
      - "8000:80"
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• https://ipaddress:9443
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$ export DOCKER_HOST=ipaddress:2375
$ […]
$ unset DOCKER_HOST
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$ export DOCKER_HOST=‘ipaddress:2375’ # Example: “192.168.0.1:2375”
$ docker ps –a # List the running containers
$ docker run --name web-server -d -p 8000:80 nginx # Starts nginx
$ unset DOCKER_HOST # Disconnect from module
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$ export DOCKER_HOST='ipaddress:2376’
$ export DOCKER_CERT_PATH=/path/to/client/certificates
$ export DOCKER_TLS_VERIFY=1
$ docker ps –a # List the running containers
$ docker run --name web-server -d -p 8000:80 nginx # Starts nginx
$ unset DOCKER_HOST # Disconnect from module





•

•

•

$ export DOCKER_HOST=ipaddress:2375
$ docker run -it ubuntu bash
Ubuntu# apt update && apt install –y usbutils
Ubuntu# lsusb
1: Bus 001 Device 002: ID 23a9:ef18 USB DISK
Ubuntu# exit
$ unset DOCKER_HOST
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$ sudo apt-get install -y qemu-user-static
$ sudo docker buildx create --name optix-edge --platform linux/arm64 --node 
node_optix-edge --driver docker-container --bootstrap –use
$ sudo docker buildx use optix-edge
$ sudo docker buildx build --platform linux/arm64 -t optix-edge_test --load .
$ sudo docker save -o optix-edge_test.tar optix-edge_test



www.rockwellautomation.com

https://www.facebook.com/ROKAutomation
https://www.instagram.com/rokautomation
https://www.instagram.com/rokautomation
https://twitter.com/ROKAutomation
http://www.rockwellautomation.com/
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