








•

•

•

•

•

•

•

•

•



•

•

•





•

•

•









•

•

•





















•

•

•

••

•

• •

•









• →

• →

• →

• →





•

•

• vi Dockerfile

• i

•

FROM ubuntu:latest

RUN mkdir –p /root/app

RUN echo “echo Hello World” > /root/app/docker.sh

RUN chmod +x /root/app/docker.sh

CMD [“/bin/bash”, “-c”, “/root/app/docker.sh”]

• esc

• :wq

https://labs.play-with-docker.com/


• docker build –t hello-world .

• docker run hello-world

•





•

•

• vi Dockerfile

• i

•

FROM nginx

RUN echo “Hello World!” > /usr/share/nginx/html/index.html

CMD  [“nginx-debug”, “-g”, “daemon off;”]

• esc

• :wq

https://labs.play-with-docker.com/


• docker build –t web-test .

• docker run –it –p 8080:80 web-test

•

•



•

•

•

•



•

•



•

•

•



•

•





•

•

• vi docker-compose.yaml

• i

•

• esc

• :wq

services:
  mysql:
    image: mysql:5.7
    container_name: mysql
    environment:
      MYSQL_ROOT_PASSWORD: my_secret_password
    restart: unless-stopped
  phpmyadmin:
    image: phpmyadmin/phpmyadmin
    container_name: phpmyadmin
    depends_on:
      - mysql
    environment:
      PMA_HOST: mysql
      PMA_PORT: 3306
      PMA_ARBITRARY: 1
      PMA_USER: root
      PMA_PASSWORD: my_secret_password
    restart: unless-stopped
    ports:
      - 8083:80

https://labs.play-with-docker.com/


• docker compose up

•



•

•

•

•

•

•

https://github.com/hotheadhacker/awesome-selfhost-docker
https://hub.docker.com/
https://docs.docker.com/desktop/






•

•





•

•

•

•

•

$ docker pull --platform linux/arm64 hello-world
$ docker save -o hello-world.tar hello-world



•

•

•

#file: docker-compose.yaml

services:
  hello-world:
    image: hello-world



•

•



•



•

•

•

•

•

$ docker pull --platform linux/arm64 nginx
$ docker save -o nginx.tar nginx

services:
  web-server:
    image: nginx
    ports:
      - "8000:80"





•

•

•

•

•

•

•



•

•



•

• https://ipaddress:9443

•

•

•

•



•

•

•

•

•

•

•

•

•

•

•





•

•

•

•

•

•



•

•

•

•





•

•

•



•

•

$ export DOCKER_HOST=ipaddress:2375
$ […]
$ unset DOCKER_HOST



•

•

•

•

$ export DOCKER_HOST=‘ipaddress:2375’ # Example: “192.168.0.1:2375”
$ docker ps –a # List the running containers
$ docker run --name web-server -d -p 8000:80 nginx # Starts nginx
$ unset DOCKER_HOST # Disconnect from module



•

•

•

•

•

•

•

•



$ export DOCKER_HOST='ipaddress:2376’
$ export DOCKER_CERT_PATH=/path/to/client/certificates
$ export DOCKER_TLS_VERIFY=1
$ docker ps –a # List the running containers
$ docker run --name web-server -d -p 8000:80 nginx # Starts nginx
$ unset DOCKER_HOST # Disconnect from module





•

•

•

$ export DOCKER_HOST=ipaddress:2375
$ docker run -it ubuntu bash
Ubuntu# apt update && apt install –y usbutils
Ubuntu# lsusb
1: Bus 001 Device 002: ID 23a9:ef18 USB DISK
Ubuntu# exit
$ unset DOCKER_HOST





•

•

•

•

$ sudo apt-get install -y qemu-user-static
$ sudo docker buildx create --name optix-edge --platform linux/arm64 --node 
node_optix-edge --driver docker-container --bootstrap –use
$ sudo docker buildx use optix-edge
$ sudo docker buildx build --platform linux/arm64 -t optix-edge_test --load .
$ sudo docker save -o optix-edge_test.tar optix-edge_test



www.rockwellautomation.com

https://www.facebook.com/ROKAutomation
https://www.instagram.com/rokautomation
https://www.instagram.com/rokautomation
https://twitter.com/ROKAutomation
http://www.rockwellautomation.com/

	Default Section
	Slide 1: Docker Containers and Optix Edge

	Agenda
	Slide 2: Agenda

	Introduction on containers
	Slide 3: Introduction on containers
	Slide 4: But it works on my machine!
	Slide 5: The problem
	Slide 6: The solution
	Slide 7: Packing techniques
	Slide 8: The overpacker: Virtual machines
	Slide 9: Virtual machines
	Slide 10: Virtual machines
	Slide 11: “VMs are like standalone houses: secure, but heavy and slow to build. What if we could have something lighter, faster… but still isolated?”
	Slide 12: The minimalist traveller: Containers
	Slide 13: Containers
	Slide 14: Containers

	Containers architecture
	Slide 15: Containers architecture
	Slide 16: Containers vs. Virtual Machines
	Slide 17: A lot of unnecessary duplicates
	Slide 18: Containers vs. images
	Slide 19: Redundancy and scalability
	Slide 20: Redundancy and scalability

	Why Docker
	Slide 21: Why Docker?
	Slide 22: Why Docker?
	Slide 23: Other containerization platforms

	Creating a simple image
	Slide 24: Creating a simple image
	Slide 25: Image building blocks
	Slide 26: The Dockerfile
	Slide 27: Hello world!
	Slide 28: Hello world!
	Slide 29: Hello world!
	Slide 30: Customizing an existing image
	Slide 31: Hello world!
	Slide 32: Hello world!
	Slide 33: The Composer plugin
	Slide 34: So, why the Composer plugin is so used?
	Slide 35: Patching a running environment
	Slide 36: Reducing attack surface
	Slide 37: MySQL + PhpMyAdmin
	Slide 38: MySQL + PhpMyAdmin
	Slide 39: MySQL + PhpMyAdmin
	Slide 40: Want to learn more?

	Docker on the OptixEdge
	Slide 41: Docker engine on the Optix Edge
	Slide 42: Enabling the Docker engine
	Slide 43: Enabling the Docker engine
	Slide 44: Loading a Docker container with System Manager
	Slide 45: Loading containers from USB
	Slide 46: Loading containers from USB
	Slide 47: Loading containers from USB
	Slide 48: Loading containers from USB
	Slide 49: Example of nginx server
	Slide 50: Controlling Docker with Portainer
	Slide 51: Portainer
	Slide 52: Enable Portainer from SystemManager
	Slide 53: Enable Portainer from SystemManager
	Slide 54: Starting containers with Portainer
	Slide 55: Loading a Docker container with Portainer
	Slide 56: Creating a new stack
	Slide 57: Example of nginx server
	Slide 58: Docker CLI
	Slide 59: Enable Docker CLI SystemManager
	Slide 60: Connect the docker daemon to the agent
	Slide 61: Sending commands to unencrypted agent
	Slide 62: Sending commands to encrypted agent
	Slide 63: Sending commands to encrypted agent
	Slide 64: Access USB devices
	Slide 65: Enabling Docker access to USB
	Slide 66: Building a custom image
	Slide 67: Building a custom image
	Slide 68


